
   

 

AUTOSAR – Basic 4 Weeks Training 
 

Duration:  4 Weeks 

Delivery Format: Classroom/Online 

  

 

Training Curriculum: 

Week 1 – Automotive and AUTOSAR (ASWC, RTE, OS, IO and Cdd) 
 
Day 1  
 
AUTOSAR – Introduction & ASWC 
 

 Overview and Introduction to Architecture 

 Application Design in VFB Level 

 Software Component 

 Interfaces in AUTOSAR 
 

Day 2 
 
RTE & OS 
 

 RTE Layer 

 Implement RTE 

 OS 

 Implement the ASWC with OS and RTE 
 

Day 3 and Day 4  
 
RTE & OS Implementation 
 

 Implementing the ASWC -  Exploring all the possible RTE 
implementation. 

 Integration of ASWC with other stacks 

 Code navigation in Rte. Demonstrating how RTE Events trigger the runnables with the help 
of OS 

 Code navigation of access points. 

 Building wrappers for code migration 
 

 
 



   

 

Day 5  
 
Cdd and IO Stack 
 

 IoHwAb Layer 

 DIO Driver 

 PORT Driver 

 PWM Driver 

 ICU/OCU Driver 

 ADC Driver 

 Implementation- Managing the IO Stack using IO Abstraction Layer 

 Complex Device Drivers 

 Implementation- Managing the IO Drivers using Complex Device Drivers- Seat Heater 
Application 

 

Evaluation of Week 1 
 

 Requirements to software requirements 

 VFB design 

 Accessing the hardware peripherals through CDD and IO 

 Generating the code and testing the same  
 

  Week 2 – Communication Stack 
 

Day 1  
 
COMMUNICATION and CAN Stack with Implementation 
 

 Communication Module 

 PDUR 

 CANIF 

 CAN Driver 

 CAN Transceiver 

 IPDUM 

 CAN TP 

 Implementation of Communication Stack 

 Loading the dbc file and monitoring the code flow from Com Module to CAN using ECUC 
reference 

 Compare the dbc file and the PDUs and make sure the data constraints are applied and 
the PDU config in stack and dbc are same.  

 

 
 
 



   

 

Day 2  
 
Configuring the Com Module, PDUR, CANIF and CAN controller 
 

 Trace the Signal/PDU in the com stack 

 Configure the Com Module for requirements 

 Configure the other modules and fix all the dependency errors 

 Do Data Mapping  

 Generate the Code 

 Differentiate Com Send and Com Receive signal Behaviour in code 

 Monitor Update Bit behaviour in code  

 Gateway Functionality – Signal Routing , Application Routing and PDU Routing  

 Application to Check the status of the COM manager and implement the logic to transmit 
data only if COMM is in FULL COM 

Day 3  
 
Handling Call Backs and Callouts 
 

 Writing Call back functions for signal failure and other use cases 

 Triggering IPDU callouts 

 Handling Notifications 

 Testing the Com stack using CANoe 

 
 Day 4   
  
Mode Management and Implementation 
 

 COM Manager 

 CAN SM 

 NMIF 

 CAN NM 

 BswM 

 EcuM 

 StdM 

 SecOC 

 Implementation of Mode Management – Configuring different wakeup sources 

 Write application code to trigger the CAN bus and check the status of the Can bus before 
Can transmission.  

 
 
 
 
 
 



   

 

Day 5  
 
BSW Manager and ECU Manager 
 

 Configuring the BSW Manager for Communication Stack and a mode Switch condition as 
given by ANCIT team 

 ECU Manager understanding  
 

Week 3 – Memory, Security and other managers 
 

Day 1 and Day 2 Communication Stack Evaluation 
 

Day 3  
 
Memory Stack and Implementation 
 

 EEPROM driver 

 Flash Driver 

 Fee 

 EA 

 MemIf 

 NVM 

 Implementation of Memory Stack from ASWC 

 Boot Loader Introduction 
 

Day 4  
 
WatchDog Stack and Crypto 
 

 WDG Driver 

 WDG Manager 

 WDG If 

 Crypto Stack – CsM and CryIF 

 Implementation  

 

Day 5 and Day 6 – UDS Theory 
 

  
 
 
 
 
 



   

 

Week 4 – Diagnostics Stack  
 

Day 1, Day 2 and Day 3  
 
UDS, Diagnostic Stack and Implementation 
 

 DEM 

 DCM 

 FIM 

 DET 

 Implementation of Diagnostic Stack 

a. DTC Implementation 

b. NRC checks 

c. Service Id implementation 
 

Day 4 and Day 5 Implementation of specific use case as evaluation 
  


